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Introduction

Systems are becoming extremely software-reliant

Need to verify and validate requirements
• Requirements errors propagate through design
• Need to verify/validate requirements

Major integration and coding issues
• Incur massive re-engineering rework
• Could be removed by early analysis
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Architecture Analysis and Design Language

Model-Based Engineering with AADL
• Architecture Language Description standardized by SAE
• Description of Systems and Software Concerns
• Precise & unambiguous semantics
• Textual and Graphical Representation

Support for Model Analysis
• Verify system requirements (i.e. latency, safety)
• Check model integration before producing the implementation
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AADL Model-Based Technology Overview

Security
Intrusion
Integrity

Confidentiality

Safety 
& Reliability

MTBF
FMEA

Hazard 
analysis

Real-time
Performance

Execution time/
Deadline 

Deadlock/starvation

Latency

Resource
Consumption

Bandwidth
CPU time

Power 
consumption

Data precision/
accuracy

Temporal 
correctness

Confidence

Data 
Quality

Architecture Model

Single Source Annotated Architecture Model 
with Well-defined Semantics

Auto-generated 
analytical models
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Understanding Actual Software Issues

High Fault Leakage Drives Major Increase in Rework Cost 
Aircraft industry has reached limits of affordability 

due ro exponential growth in SW size and complexity. 

700Ai Requirements & 
system Interaction errors 8~ /ate error 

discovery at high 
reworlc cost 

................. ~ 
Major cost savings through rework avoidance 

by early discovery and correction 

A $1 Ok architecture phase correction saves $3M 

Rework and certification is 70% of SW 

2~%, 16% 
Sx Unit 

Tut 

Integration 
Tut 

Where faults are introduced 

Where faults are found 

cost, and SW is 70% of system cost. The estimated nominal wst for fault removal 

NIST Planning report 02.3, The Economic tmpacts oftnadequate 
tnfraiD'ucAire fJr Software Teiting, May 2002. ·,. 

D. Gi l in, Software Quality Au uranct: From Theory to 
tmptementa6on, Pearson/Addison-Wesley (2004) Code 

B.W. Boehm, Software Engineering Economics, Prentice Hall (1981) 

Costly certification process leads to high 
percentage of operational work around. 

• Seftwara Engineering Institute I C~Melhl 
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Use of AADL in Development Process

Software and Component Design
Define components requirements & interfaces
Early verification validation of components integration

Code Development
Auto-Generate Code (AADL, Simulink, SCADE)
Avoid traditional coding errors
Ensure correct translation of requirements

Unit & Integration Test
Automatic generation of tests from models
Reduce tests as system was validated earlier
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Security Specifications

Leverage AADL properties for security level specification
Define security-specific values
Associate them with components and interfaces

Direct mapping to MILS Security Level concepts
MILS subjects to AADL runtime components
MILS objects to AADL interfaces

Objects (data produced)

Subjects
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Partitioning Policy (as in ARINC653 or MILS)

Partitions content and attributes
Use the regular process component
Include partition resources (tasks, data, etc.)

Time and Space Isolation
Time: Partition execution slots
Space: Association of partitions to memory segments

Partition 1

P1 P2

Partition 2

P1 P2
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Modeling a MILS architecture - example

Partition runtime

Separation kernel Physical Memory

Logical Memory Segments

Partition Content Tasks Software interfaces and data flows

Software (process) &
Hardware (cpu/memory)
associations/bindings



14
AADL meeting – ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Safety Policy with the Error-Model Annex V2

Standardized AADL annex dedicated for safety specification
Integrated with AADL-core
Extend/refine existing models

Support of Error Types Ontology
Characterize the error (i.e. divide by zero, late value)
Types hierarchy (i.e. late value is an extension of a timing error)

Error Propagations and Behavior Specification
Errors being propagated by AADL components
Behavior based on external interfaces or sub-components
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Error Propagation

Sensor Processing Actuator

Error Source
of ValueError

Sink for ValueError &
source for NoData

Error Sink
for NoData

Errors Propagations through Interfaces

ValueError NoData

Error Type Transformation
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Error Propagation Example

thread producer 
f eatures I 

I producer _prs 

I consumer_producer::p 

dat aou t : out data port charact er; 
annex EMV2 { ** 

use types . errorlibrary; 

e rror propagations 
dat aou t : out propagation {Val ueError}; 

flows 
f o : e rror source dat aou t {Val ueError}; 

end propagations ; 

component e rror behavior 
events 

produ~_IO_oonsumJ consumer_prs 

· I I consumer_producer::consumer.i 

I dataout I ' I :::.. ..... , I I 
ro ' I \ 

thread c:u-surrer 
features 

IU 

dat a1r : in data port C1aract er; 
.:tnn P.X FMV? •: "'* 

use t ypes errorlibrary; 
~i. • · ' " . •• r . . 1 ~, 

error propagations 
:lat ai n : in propagation {Val ue::rror}; 

flows 
f0 : erro r • ink dat ai n {Val ueErro·}; 

end propagations ; 

co~pon ent error behavi or 
transitions 

I 
I 

I 

Comput ationError error event; 
transitions 

t O : Operational ·[Comput ationError)·> Failed ; 
propagations 

t 0 Operaticnal ·f:latainfVal ueEr·or}l·> =ailed; 
end component; 

pO : Failed ·II·> dat aou t{Val ueError}; 
end component; 

properties 

**} J 

prope rties 
=MV2 : : :)~Vt! r ·i lv => A~4761 : :HaLl:::ln.Juuti i:IDDli~s l o Uoloi r· . Volu~Ern.J r · 

EMV2:: severity => ARP476l :: Hazardous applies t o dat aou t . Val ueError; 
EMV2:: 0ccurrenceOi s t ri bution => [ ProbabilityVal ue => 1.42e-5 ; Di s t r i bution => Poi sson;) 

applies t o dat aou t . Val ueError; 
EMV2:: likelihood => ARP476l :: Probabl e applies t o dat aou t . Val ueError; 
EMV2:: hazards => 

( [ c ross ref e renee => "TBO" ; 
f ailure => '' '' ; 

)) 

phases => ( "a ll" ) ; 
desc ri ption => "Bad Val ue f rom the th read producer"; 
comment => "Must check the software tha t the va lue 1s not f aulty"; 

applies t o dat aou t . Val ueError · **},, ........ ~ .............................................................................. ... 
• 

~ Software Engineering Institute - CarnegieMelbt 
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Error behavior

States machines
Error-related transitions
Propagation rules
Use of error types

Composite behavior
Define system states according to its parts
ex: “I am failing if one of my component is failing”

Normal

Failed

Failure
(BadData)

Failed
(NoValue)

Recover

Subsystem 1
(Normal)

Subsystem 2
(Failing)

Subsystem 1
(Normal)

Subsystem 2
(Normal)
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Error behavior example

' 
; 
J 

} 

fii~IJL 

_ m : Nfj1_ mmno.y. 

t~1~_fi'III ~::~11110flmemOI)'_ 

' I 

- _,,~pr~~;- (~h;ck_deos_comp liance (this)) 
prove (check_mils_compliance(this)) 

**} ; 
~ annex EMV2 { ** 
~ use t ypes errorlibrary; 

:pu , partl)) 
:pu , pa r t 2) ) 

·tl; 

·t 2; 

use behavi or errorlibrary:: FailAndRecover; 

composite error behavi or 
s t at es 

[partl . Failed)-> Failed; 
[part 2. Failed)-> Failed; 
[cpu . Failed)-> Failed; 

end composite; 
**} ; 
end node . imp l; 

• Software Engineering Institute I CarnefJieMellon 

applies 
applies 

t o partl; 
t o part 2; 
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Security Policy Verification

Component integration and composition
Partitions share the same level with their tasks
Partitions contain objects at the same level

Runtime issues
Each process is isolated in a partition
Partitions has at least one execution slot
Memory segments contain partitions at the same security level

Communication Policies
Communication share the same level
A shared device manages objects at the same level
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Specifying Validation Rules with RESOLUTE

Specify constraints on the AADL model
Check model consistency and properties
Validation at model level, avoid propagation of errors

List of rules and functions to check the model
Select elements to be verified
Filter them according to your constraints
Check components characteristics

Select process, connections &
virtual processor elements

Filter connected partitions
with their associated runtime

Check the runtime security
level is equal
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Generating Assurance Cases
Generate assurance-cases using RESOLUTE and AADL

Show constraints dependencies
Export to Certware
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Safety documentation Generation - FHA

Functional Hazard Assessment
List of all error sources of the system
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Safety documentation Generation - FTA

Fault-Tree Analysis
Bottom-up Approach
Show all contributor of a fault
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Safety documentation Generation – Fault Impact

Failure Mode and Effect Analysis
Propagation paths of failures
Highlight failure containment
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Automatic Code Generation

Automatically produce system implementation
Ensure implementation of system requirements
Avoid traditional mistakes of manual code generation

Low overhead (memory footprint and additional CPU time)
Less than 10% in memory and computation increase
Benefits outweigh the potential 

Support for different runtime
ARINC653/MILS – focus on safety/security (DeOS, POK)
POSIX (RTEMS, Linux)
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Conclusion

AADL flexible language to define safety and security concerns
Early verification, reducing tests and integration costs
Automatic code production, avoiding code and integration mistakes

Integration with existing development methods
Safety documentation (i.e. ARP4761)
Coding standards (i.e. ARINC653)

Bridge with Validation and Assurance Case tools
Check model consistency and composition
Auto-Generate assurance cases from models
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Links & Useful Information

AADL website – http://www.aadl.info

AADL wiki – http://www.aadl.info/wiki

ARINC653 AADL annex standard - http://standards.sae.org/as5506/2/
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Contact

Dr. Julien Delange
RTSS AP Initiative
Telephone:  +1 412-268-9652
Email:  jdelange@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.aadl.info
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax:  +1 412-268-6257
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